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Abstract

Cognitive control is subjectively costly, suggesting that engagement is modulated in relationship 

to incentive state. Dopamine appears to play key roles. In particular, dopamine may mediate 

cognitive effort by two broad classes of functions: 1) modulating the functional parameters of 

working memory circuits subserving effortful cognition, and 2) mediating value-learning and 

decision-making about effortful cognitive action. Here we tie together these two lines of research, 

proposing how dopamine serves “double duty”, translating incentive information into cognitive 

motivation.

Introduction

Why is thinking effortful? Unlike physical exertion, there is no readily apparent metabolic 

cost (relative to “rest,” which is already metabolically expensive) (Raichle and Mintun, 

2006). And yet, we avoid engaging in demanding activities even when doing so might 

further valuable goals. This appears particularly true when goal pursuit requires extended 

allocation of working memory for cognitive control. One hypothesis is that cognitive effort 

avoidance is intended to minimize opportunity costs incurred by the allocation of working 

memory (Kurzban et al., 2013). If this is true, it suggests not only that working memory is 

allocated opportunistically, but also that allocation policies entail sophisticated cost-benefit 

decision-making that is sensitive to as yet unknown cost and incentive functions. In any 

case, the phenomenon raises a number of questions: How do brains track effort costs? What 

information is being tracked? How can incentives overcome such costs? What mechanisms 

mediate adaptive working memory allocation?

Working memory capacity is sharply limited, especially in the domain of cognitive control, 

involving abstract, flexible, hierarchical rules for behavior selection. Optimizing working 

memory allocation is thus critical for optimizing behavior. Prevalent computational 

frameworks have proposed reward- or expectancy-maximization algorithms for working 

memory allocation (Botvinick et al., 2001; Donoso et al., 2014; O’Reilly and Frank, 2006). 

Yet, these frameworks largely neglect that working memory allocation itself carries 
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affective valence. High subjective costs drive disengagement, whereas sufficient incentive 

drives engagement. That is, allocation of working memory is a motivated process. In this 

review, we argue that modulatory functions of the midbrain dopamine (DA) system translate 

cost-benefit information into adaptive working memory allocation.

DA has been implicated in numerous processes including, but not limited to, motivation, 

learning, working memory, and decision-making. Two largely independent literatures 

ascribe disparate functional roles to DA with relevance to motivated cognition. First, DA 

influences the allocation of working memory directly, by modulating the functional 

parameters of working memory circuits. For example, DA tone in the prefrontal cortex 

(PFC) influences the stability of working memory representations, with higher extrasynaptic 

tone promoting greater stability, to a limit (Seamans and Yang, 2004). Phasic DA efflux 

may also push beyond the limit and toggle the PFC into a labile state such that working 

memory representations can be flexibly updated (Braver et al., 1999). Additionally, DA may 

support the learning of more sophisticated (and hierarchical) allocation policies via synaptic 

depression and potentiation in corticostriatal loops (Frank et al., 2001; O’Reilly and Frank, 

2006). Second, DA is critical for action selection. Specifically, DA trains value functions for 

action selection via phasic reward prediction error dynamics potentiating behaviors that 

maximize reward with respect to effort in a given context (see (Niv, 2009) for a review). DA 

tone in the striatum and the medial PFC also promotes preparatory and instrumental 

behaviors in response to conditioned stimuli, and particularly effortful behavior (Kurniawan 

et al., 2011; Salamone and Correa, 2012).

Here, we tie together these largely independent lines of research, by proposing how the very 

same functional properties of DA encoding incentive information translate incentives into 

cognitive motivation by regulating working memory. Specifically, we propose that DA 

dynamics encoding incentive state promote subjectively costly working memory operations 

experienced as conscious, phenomenal effort. As we detail below, our proposal makes use of 

the concept of a “control episode” during goal pursuit (cf. “attentional episodes“ (Duncan, 

2013)), involving stable maintenance of the goal state at higher-levels of the control 

hierarchy, along with selective updating of lower level rules for guiding behavior during 

completion of sub-goals, as progress is made toward the ultimate goal state. We review the 

ways in which DA dynamics encoding a net cost-benefit of goal engagement and persistence 

results in adaptive working memory allocation. As such, DA translates incentive motivation 

into cognitive effort.

Motivated cognition

Why cognitive effort matters

Cognitive effort is an everyday experience. The subjective costliness of cognitive effort is 

consequential, sometimes driving disengagement from otherwise highly valuable goals. Yet, 

surprisingly little is known about this phenomenon. It is neither clear what makes tasks 

effortful, nor why task engagement is apparently aversive in the first place (Inzlicht et al., 

2014; Kurzban et al., 2013).

Westbrook and Braver Page 2

Neuron. Author manuscript; available in PMC 2017 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Beyond a quizzical influence over goal-directed behavior, there are numerous reasons to 

care about cognitive effort. First, expenditure is critical for career and educational success, 

economic decision-making, and attitude formation (Cacioppo et al., 1996; Von Stumm et al., 

2011). Second, deficient effort may be a significant component of neuropsychiatric disorders 

for which avolition, anhedonia, and inattention feature prominently, such as ADHD 

(Volkow et al., 2010), depression (Hammar et al., 2011), and schizophrenia (Strauss et al., 

2015). Effort avoidance may also contribute to declining cognitive performance in healthy 

aging (Hess and Ennis, 2011; Westbrook et al., 2013). Engagement with certain kinds of 

cognitive tasks appears negatively valenced, indicating a subjective cost. Subjectively 

inflated effort costs might undermine cognitive engagement and thereby performance.

Control-demanding tasks are valenced

Not all tasks are effortful. Tasks requiring allocation of working memory for cognitive 

control, however, appear to be (Botvinick et al., 2009; Dixon and Christoff, 2012; Dreisbach 

and Fischer, 2012; Kool et al., 2010; Massar et al., 2015; McGuire and Botvinick, 2010; 

Schouppe et al., 2014; Westbrook et al., 2013). Individuals allowed to select freely between 

tasks differing only in the frequency with which working memory must be re-allocated for 

cognitive control express a progressive preference for the option with lower reallocation 

demands (Kool et al., 2010; McGuire and Botvinick, 2010). Critically even when offered 

larger rewards, decision-makers discount rewards as a function of effort costs, thus selecting 

smaller rewards with lower demands over larger rewards with higher demands (Massar et 

al., 2015; Westbrook et al., 2013).

Under what conditions might cognitively demanding tasks acquire affective valence? By one 

account, tasks demanding cognitive control involve response conflict (Botvinick et al., 

2001) or frequent errors (Brown and Braver, 2005; Holroyd and Coles, 2002), and as such 

are less likely to be successful, thus engendering avoidance learning to bias behavior 

towards tasks with higher chances of success (Botvinick, 2007). Multiple lines of evidence 

suggest that conflict is aversive. First, conflict in the context of a Stroop task predicts overt 

avoidance (Schouppe et al., 2012). Also, trial-wise variation in subjective frustration with a 

stop-signal task predicts BOLD signal in the anterior cingulate cortex (ACC), otherwise 

implicated in conflict detection (Spunt et al., 2012). In another study (McGuire and 

Botvinick, 2010), participant ratings of their desire to avoid a conflict-inducing task 

correlated positively with individual differences in recruitment of ACC and also dorsolateral 

PFC, putatively involved in working memory maintenance of task sets. Moreover, the 

dorsolateral PFC correlation remained after controlling for performance differences (RTs 

and error rates), indicating that the desire to avoid the task did not simply reflect perceived 

failure. Finally, interesting interactions between affect and cognitive control also support the 

notion that conflict is aversive (Dreisbach and Goschke, 2004; Saunders and Inzlicht, 2015; 

Shackman et al., 2011). For example, individuals respond faster to affectively negative, and 

slower to affectively positive stimuli, following priming by conflicting versus non-

conflicting Stroop trials (Dreisbach and Fischer, 2012).

Avoidance learning to minimize loss may partly explain aversion to working memory 

allocation for cognitive control. Yet, it cannot be the full story. On the one hand, individuals 

Westbrook and Braver Page 3

Neuron. Author manuscript; available in PMC 2017 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



avoid cognitive demand, even controlling for reward likelihood (Kool et al., 2010; McGuire 

and Botvinick, 2010; Westbrook et al., 2013). On the other, opportunity costs may reflect 

more than just the likelihood of failure during the current control episode; namely, they may 

reflect the value of missed opportunities (Kurzban et al., 2013). Finally, an adaptive system 

must also be judicious, as avoidance of all goals requiring cognitive control is clearly 

maladaptive. Decision-making must consider both costs and benefits. Indeed, there is 

growing evidence that the ACC is as important for biasing engagement with effortful, 

control-demanding tasks as it is for biasing avoidance (Shenhav et al., 2013).

Incentives motivate cognitive control

If control is avoided because of subjective costs, increased incentives could offset costs, 

promoting control. Indeed, incentives yield control-mediated performance enhancements, 

see (Botvinick and Braver, 2015; Pessoa and Engelmann, 2010) for review. Incentives 

enhance performance in control-demanding tasks encompassing visuospatial attention 

(Krebs et al., 2012; Small, 2005), task-switching (Aarts et al., 2010), working memory 

(Jimura et al., 2010), and context maintenance (Chiew and Braver, 2014; Locke and Braver, 

2008), among others. Furthermore, incentives predict greater activity in control-related 

regions, including medial and lateral PFC. For example, incentives yield increased BOLD 

signal in the ACC, propagating to dorsolateral PFC, corresponding well with the canonical 

model by which the ACC monitors for control demands and recruits lateral PFC to 

implement control (Kouneiher et al., 2009). This particular study showed that incentives 

yielded an additive increase in BOLD signal, on top of demand-driven control signals. 

However, more recent work has shown that incentive information is not merely additive, but 

interactive: with increasing incentive-related activity under high task-demand conditions, 

thus more directly implicating incentives in the enhancement of cognitive control 

(Bahlmann et al., 2015), cf. (Krebs et al., 2012). Beyond mean activity, incentives also 

enhance the fidelity of working memory representations. Task set representations are more 

distinctive, as revealed by multivariate pattern analysis of BOLD data, during incentivized 

working memory trials (Etzel et al., 2015). Interestingly, increased distinctiveness predicts 

individual differences in incentive-driven behavioral enhancement.

Incentives not only drive more control-related activity, or higher fidelity task set 

representations, but they also affect the selection of more costly control strategies. For 

example, cognitive control may be recruited proactively, in advance of imperative events, or 

reactively, concurrent with event onset (Braver, 2012). Proactive control has behavioral 

advantages, but also incurs opportunity costs that bias reliance on reactive control. 

Incentives appear to offset costs, increasing proactive relative to reactive control, as 

reflected in sustained increases in BOLD signal prior to imperative events, and attenuated 

phasic responses at event onsets, and this shift to proactive control predicts performance 

enhancements, e.g. (Jimura et al., 2010). Moreover, incentive-driven shifts to proactive 

control are larger among highly reward-sensitive individuals (Jimura et al., 2010).

In sum, working memory operations are treated as subjectively costly. Whether apparent 

costliness reflects avoidance learning of behaviors with low likelihood of success, or 

opportunity costs, incentives can counterbalance costs, promoting working memory 
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operations. Cost-benefit decision-making thus underlies working memory allocation for 

cognitive control. We propose that during goal pursuit, individuals engage in costly “control 

episodes”, remaining engaged to the extent that benefits outweigh costs. Moreover, we 

propose that DA solves a core computational problem of control episodes: namely, value-

based modulation of stability and targeted flexibility of working memory for cognitive 

control that reflects not only prior reward learning, but also instantaneous effects of current 

incentive state.

To illustrate, we consider an example control episode involving the demanding task of 

finding the product of two two-digit numbers, incentivized by points on an examination 

(without calculators; Figure 1). Control episodes may be initiated by incentive-driven (point-

value cued) allocation of working memory to represent the goal state (finding the product). 

Throughout an episode, the actor must maintain high-level goal information (e.g. the 

original numbers), resisting interference from distractors, while flexibly updating targeted, 

lower-level representations of sub-goals in a hierarchical fashion. Sub-goals in our example 

include: a) multiplying the ones column digits; b) carrying the tens-digit value of that 

product; c) adding that value to the product of the tens-digits, etc. Maintaining each sub-goal 

is subjectively costly and thus the stability of goal representations should reflect the value of 

those goals. Similarly, updating operations, as required when sub-goals are completed, are 

also subjectively costly. As each stage has its own costs, and costs may accumulate in excess 

of perceived benefits, any stage may result in disengagement. We consider the mental 

multiplication example for illustrative purposes only; the general notion of a control episode 

should apply broadly to any hierarchically structured, temporally extended sequence of goal-

directed behaviors that require working memory allocation (e.g., planning, problem-solving, 

and reasoning).

In the sections that follow, we describe how DA mediates value-based working memory 

management during control episodes. Figure 2 provides an overview of critical functions 

that will be reviewed. Tonic DA, for example, influences the stability of working memory 

contents by direct action in PFC (Figure 2B), while phasic DA efflux in the striatum trains 

policies for value-based updating of working memory contents that reflect both the reward 

value of the goals to which they correspond and effort (updating and maintenance) costs 

(Figure 2C). While cached value-functions reflect past experience, their implementation is 

subject to instantaneous modulation by incentive state. Accordingly, we describe how DA 

and its projection targets encode net incentive state, dynamically accounting for goal state 

re-valuation and generalized motivation. Such information is used to bias policies for 

working memory allocation actions (Figure 2D). Hence DA does double duty in translating 

incentive information into cognitive effort both by functional modulation of working 

memory circuits (Figure 2B and 2C) and by influencing value-learning and decision-making 

about effortful action (2C and 2D). We take up each of these key duties in turn.

DA and Working Memory Management

Successful control episodes demand stable maintenance and also targeted, flexible updating 

of working memory, with DA appearing to play an important role in both processes. In the 

PFC, DA influences the stability of recurrent networks (Brunel and Wang, 2001; Seamans 
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and Yang, 2004) and, thereby, the stability of short-term configurations that constitute 

control-related working memory representations (Cools and D’Esposito, 2011; Robbins and 

Arnsten, 2009). In the striatum, DA trains gating policies that come to determine the kinds 

of information that becomes represented in the PFC, and the stimulus signals that drive 

updating of specific PFC sub-regions (Frank et al., 2001; O’Reilly and Frank, 2006). 

Thereby, DA plays key roles in initiating and sustaining control episodes by functionally 

promoting both working memory stability and targeted flexibility.

Promoting stability of higher-order goal states

Working memory representations in the PFC (Miller and Cohen, 2001) (though see (Riggall 

and Postle, 2012)) are instantiated as temporarily stable, recurrent cortical pyramidal 

networks (Brunel and Wang, 2001). Extracellular DA maintains recurrent dynamics by 

increasing excitatory NMDA drive, and also pruning firing external to such networks by 

exciting inhibitory GABA interneurons (Berridge and Arnsten, 2013; Cools and D’Esposito, 

2011; Seamans and Yang, 2004). The net effect of increasing DA (to a point) is to increase 

network-specific recurrent firing rates (Figure 3) and thus signal-to-noise ratio of working 

memory representations (Brunel and Wang, 2001). For example, DA D1 receptor agonism 

sharpens spatial tuning in task-relevant PFC neurons in monkeys performing a spatial 

working memory task (Vijayraghavan et al., 2007).

Importantly, PFC DA changes dynamically, precisely when needed, to promote working 

memory maintenance. Salient, cognitive task-relevant events have been shown to drive 

mesocortical DA neuron firing that can increase extrasynaptic DA concentration in the PFC 

(Figure 2B), reviewed in (Bromberg-Martin et al., 2010; Phillips et al., 2008). In humans, 

BOLD dynamics in the ventral tegmental area (VTA) support the hypothesis that DA 

neurons respond to cognitive task demands, independently of reward, e.g. (Boehler et al., 

2011), as well as the interaction of reward and task complexity (Krebs et al., 2012). The 

effect of this VTA activation may be to promote maintenance of task sets in lateral PFC 

regions, e.g. in those demonstrated (by reversible TMS lesion) to be critical for supporting 

rule-guided behavior (D'Ardenne et al., 2012). More directly, a PET study has revealed 

increased D2 receptor binding in ventrolateral PFC in humans performing a verbal working 

memory task, relative to a simpler sustained attention task (Aalto, 2005) (Figure 4A).

Incentive cues also drive PFC DA release, reviewed in (Bromberg-Martin et al., 2010; 

Phillips et al., 2008). To the extent that incentive-related DA promotes robust maintenance, 

such effects help explain motivational enhancements of memory- and rule-guided behavior. 

It could, for example, explain why incentives predict stronger proactive, maintenance-

related BOLD signal in the lateral PFC during a Sternberg-type working memory task that 

mediates better performance (Jimura et al., 2010) (Figure 4B). It could also explain 

performance enhancements following pharmacological COMT inhibition (boosting PFC DA 

tone, in particular) in an exploration/exploitation task, which requires the tracking of 

multiple value signals in working memory (Kayser et al., 2014).

Conversely, while increasing DA promotes maintenance, flexible shifting may require 

decreased DA. In one study, set-shifting performance was modulated in humans dosed with 

l-dopa. FMRI evidence localized these effects to the PFC (Shiner et al., 2015). Specifically, 
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when participants were dosed with l-dopa, the difference between better performance on 

incentivized, and worse performance on non-incentivized trials, was removed. Critically, 

this mirrored the attenuation of BOLD signal deactivation in the ventromedial PFC typical 

on incentivized versus non-incentivized trials. The result was interpreted as evidence that set 

maintenance was under dopaminergic control, and this control must be transiently removed 

to shift task sets.

Too much extrasynaptic DA, on the other hand, may destabilize working memory 

representations (Berridge and Arnsten, 2013; Cools and D’Esposito, 2011; Seamans and 

Yang, 2004). One potential mechanism of supraoptimal DA effects is increasing stimulation 

of relatively low-affinity DA D2 receptors (Durstewitz and Seamans, 2008). This D2 

stimulation leads to decreased GABA and NMDA currents, thus counteracting D1 activation 

effects. Blocking D2 action, therefore, could enhance PFC representations. In a recent 

demonstration, DA D2 receptor blockade by amisulpride, relative to placebo, enhanced PFC 

representations as indexed by sharper multivariate pattern discrimination of PFC BOLD data 

between incentive conditions during an incentive learning task (Kahnt et al., 2015).

According to one proposal, task-based DA release yielding supra-optimal DA may provide a 

local task-switching mechanism in the PFC (Braver et al., 1999). Specifically, DA release 

may toggle PFC lability, by pushing DA tone from optimal to supraoptimal levels, 

increasing the likelihood of context updating during task performance. However, as noted, 

this kind of updating would have diffuse influence and lacks the temporal and spatial 

specificity required for targeted updating of, for example, a subcomponent of a task-set 

hierarchy (O’Reilly and Frank, 2006). Even if phasic DA does not support selective 

updating, it may be useful to serve as a general updating or disengagement signal.

We close this section by noting that while increasing incentive can drive higher PFC DA 

tone, a recent study has shown conflicting results. Notably, the investigators found higher 

PFC DA release in anticipation of less subjectively valued outcomes in monkeys (Kodama 

et al., 2014). The authors interpreted this unexpected result as reflecting stress-driven DA 

release observed in other studies, e.g. (Butts et al., 2011). Thus incentive can promote PFC 

DA tone, but stress may be another affective determinant. In any case, there is a growing 

consensus that affective stimuli influence PFC DA tone which, in turn, modulates the 

stability of recurrent networks and, thereby, the contents of working memory.

Promoting targeted, flexible updating of task sets

The need for both stability and flexibility of working memory, during control episodes, 

creates opposing demands that DA acting by the PFC alone cannot resolve. Indeed, DA-

mediated increases in stability undermine flexibility, as reflected in higher task-switch costs 

(Herd et al., 2014; van Schouwenburg et al., 2010). There is evidence, however, that DA can 

increase cognitive flexibility via D2 signaling in the ventral striatum (VS) (Aarts et al., 

2010; Samanez-Larkin et al., 2013; Shiner et al., 2015; van Holstein et al., 2011). Incentives 

can enhance task switching, and this effect is stronger among individuals with a variant of 

the DA transporter gene DAT1 predicting lower transporter density, and therefore higher 

synaptic and extrasynaptic DA tone, particularly in the striatum (Aarts et al., 2010). This 

result supports the hypothesis that striatal DA release mediates incentive enhancement of 
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cognitive flexibility. Evidence of D2 receptor involvement comes from a study comparing 

the effects of the DA agonist bromocriptine, and the DA D2-selective antagonist sulpiride 

on task-switching (van Holstein et al., 2011). Critically, those individuals with DAT1 coding 

for higher dopamine transporter density (lower striatal DA tone) showed reduced switch 

costs after being dosed with DA agonist bromocriptine, and this improvement was blocked 

by the D2-selective antagonist sulpiride.

Successful control episodes require not simply generalized increases in flexibility, but 

targeted, context-specific updating. In the mental arithmetic example, it is critical to 

maintain a representation of the full problem (13 × 26), while updating specific subgoals as 

they are completed (e.g., shifting to multiply 10 × 6, after storing the 3×6 result). While DA 

in the PFC lacks the temporal or spatial specificity to support targeted updating, DA can 

effect specific updating via the basal ganglia (Frank et al., 2001; O’Reilly and Frank, 2006) 

(Figure 2C). A well-supported model holds that phasic DA release in the dorsal striatum 

(DS) trains “Go” cell (D1-expressing medium spiny neurons) synapses, through LTP, which 

increase the likelihood of contextual information being gated to the PFC. DA dips, on the 

other hand, are proposed to train “No-Go” cells (D2-expressing medium spiny neurons) 

synapses, through LTD, decreasing the likelihood of context gating (Frank et al., 2001). 

When stimuli evoke activity in relatively more Go than No-Go cells, information is gated 

(by transient removal of tonic inhibition of the thalamus) for representation into the PFC. 

Thus, by training striatal synapses to reflect reward history, phasic DA dynamics generate 

cached policies governing context-specific updating of working memory.

The gating model has been extended to support the hierarchical structure of control episodes 

(Chatham and Badre, 2015). Corticostriatal loops may support DA-mediated hierarchical 

reinforcement learning, in which content is selected for updating at different levels of a 

hierarchy (Badre and Frank, 2012; Frank and Badre, 2012). Reciprocal connections allow 

the BG to not only direct which information gets gated into working memory, but also for 

higher-level PFC representations of context to direct what lower-level representations get 

out-gated, when they are no longer useful (Chatham et al., 2014). Thus, higher-level 

representations may interact in a top-down manner with bottom-up gating mechanisms to 

adaptively target content at a hierarchically lower level.

Successful control episodes are enabled by both: a) DA-trained cached, value-based gating 

policies in cortico-striatal circuits that bias adaptive updating in hierarchical environments, 

and b) DA-mediated stability (in the PFC) and flexibility (in the striatum) of working 

memory as a function of incentive information. Thus, DA appears to translate incentives into 

cognitive motivation by direct modulation of the cortico-striatal working memory network 

supporting control episodes.

Cost-Benefit Decision-Making

Control episodes are treated as subjectively costly. Behavioral evidence suggests cost-

benefit decision-making, balancing the value of the desirable goal against an underlying cost 

function (Dixon and Christoff, 2012; Kool et al., 2010; Massar et al., 2015; Westbrook et al., 

2013), and DA likely plays a key role. Indeed, DA has long been implicated not only in WM 

and motivation, but also in both value-learning and decision-making; specifically, training 
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functions mapping value to external states along with cognitive and motor actions (Li and 

Daw, 2011; Wickens et al., 2007), including temporally extended action sequences (Holroyd 

and Yeung, 2012; O’Reilly et al., 2014). Incentive salience models propose that DA may 

further bias action selection at the time of choice by modulating value signals, e.g., as a 

function of motivational state (McClure et al., 2003; Zhang et al., 2009). So, for example, 

DA could mediate the decision to engage in a temporally extended sequence of cognitive 

actions required for multiplication of two-digit numbers, as well as to execute all sub-goals 

in sequence, as a function of the point value on an examination. In contrast, if the task were 

not incentivized, or if a lower-effort strategy was available (e.g., using a calculator), the 

decision process may instead resolve against control episode engagement. In the next 

sections, we review evidence for the role of DA in training value functions and also 

instantaneously biasing the selection of, and persistence with, costly cognitive actions.

DA and Action Policy Learning

Reward-Prediction Errors

A rich literature implicates the firing of midbrain DA cells in encoding the momentary 

difference between expected and actual reward (Schultz et al., 1997). The remarkable 

functional similarity between these reward prediction errors (RPEs) and temporal difference 

values in computational reinforcement learning (RL) has led to the hypothesis that phasic 

DA dynamics train the system to bias behaviors that increase context-based reinforcement 

likelihood (Montague et al., 1996). Mechanistically, DA does so by potentiating synapses 

linking representations of the current state to specific behaviors (Wickens et al., 2007). 

Synaptic weights acquired through this process can be thought of as value functions, in the 

sense of stronger weights biasing actions that maximize the likelihood of reward (i.e., those 

actions with greatest expected value). This extends to cognitive actions – indeed it is 

precisely these phasic DA RPEs that are thought to train working memory gating policies 

described in the previous section (Frank et al., 2001) (Figure 2C).

Critically, the functional capacity of RPE signals extends beyond simple stimulus-response 

pairings, to action-outcome association learning in the PFC (Glascher et al., 2008). From an 

action selection standpoint, this is enormously powerful. Foremost, action-outcome 

associations are necessary for calculating net incentive value: the expected benefits of 

outcomes less the cost of actions. Moreover, action-outcome associations can not only 

support selecting the most highly rewarded action in a given state, they also enable “looking 

forward”: selecting actions based upon an internal model of the environment, its states and 

action-contingent state transitions. An agent acting in a “model-based” fashion may select 

actions that also take into account its state motivation for particular outcomes (Daw et al., 

2011; Glascher et al., 2008). Indeed, sensitivity to outcome devaluation (e.g. devaluation by 

selective satiation) is used as the benchmark of model-based decision-making (Dolan and 

Dayan, 2013).

There is evidence that RPEs can reflect internal models of actions and subsequent states 

(Hiroyuki, 2014). Hence value functions may be learned for allocating working memory, if 

doing so implements a mental state that increases the probability of reward, given 

subsequent actions (Chatham and Badre, 2013; Dayan, 2012). Thus, RPEs may train value 
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functions governing working memory allocation. Evidence of value-based working memory 

allocation comes from an fMRI study of humans selecting among task sets manipulated to 

have variable utility (Chatham and Badre, 2013). The expected value of task sets was varied 

systematically over trials, and a RL model of choice behavior was used to predict trial-wise 

subjective values of task sets. Subjective value estimates predicted BOLD dynamics in a 

fronto-striatal network, supporting that task set values are tracked according to a value-

updating algorithm that is likely mediated by phasic DA RPE signals. It is worth noting here 

that, although PFC DA is thought have slow clearance, which would preclude the temporal 

resolution and specificity required for precise DA-based training, per se, there is reason to 

believe that co-release of glutamate from DA cells innervating the PFC could provide the 

mechanism for synaptic learning effects (Seamans and Yang, 2004). DA cells may thus 

direct learning, whether by the functional consequences of glutamate in the PFC or DA in 

the striatum. As discussed above, however, DA release in the PFC may have further 

consequences in the PFC in terms of promoting working memory stability, by modulating 

the dynamics of recurrently firing networks of pyramidal cells.

The functionality of RPE signals may also extend to hierarchical RL, whereby value 

functions describe actions sequences rather than individual actions (Frank and Badre, 2012; 

O’Reilly et al., 2014; Ribas-Fernandes et al., 2011). Selection across sequences is critical for 

overcoming individually costly actions that are only justifiable given the value of desirable 

outcomes at sequence conclusion (Holroyd and Yeung, 2012). In the mental arithmetic 

example, updating working memory with a ones-digit multiplication sub-goal is costly, but 

may be justifiable with regard to the progress it incurs towards the ultimate, valuable goal of 

solving the two-digit multiplication problem. Importantly, knowledge of task hierarchy 

enables agents to bias such costly actions. Pseudo-RPEs (based on perceived progress rather 

than external reward) may train value functions regarding action sequences (Ribas-

Fernandes et al., 2011). Thus RPEs may train progress-based value functions for sequences 

of effortful working memory updating and maintenance.

As we have just reviewed, DA-mediated RL appears to train value functions with numerous 

properties supporting successful control episodes. Namely, RPEs can train value functions 

based on action-outcome associations, supporting model-based prospection, and reflecting 

action sequences. Such value functions may thus promote action in hierarchically structured 

environments where individually costly actions, like working memory allocation, are 

justified inasmuch as they incur progress towards a goal that is more valuable than the 

sequence is costly. As we elaborate next, value functions within the ACC in particular, 

appear critical for biasing engagement and persistence with costly control episodes.

DA cell firing trains action-outcome associations in the ACC

The ACC and dopaminergic innervation of the ACC are critical for selecting effortful 

behavior (Kurniawan et al., 2011). In particular, RPE signals may train action-outcome 

associations in the ACC for prediction (Alexander and Brown, 2011; Donoso et al., 2014; 

Holroyd and Coles, 2002) and effort-based decision-making (Kennerley et al., 2011; 

Shenhav et al., 2013; Skvortsova et al., 2014). Action-outcome associations are necessary 

for cost-benefit computations. Unit recording studies in monkeys engaged in multi-attribute 
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decision-making have uncovered ACC neurons multiplexing information about benefits and 

costs (including effort) in a unified value-coding scheme (Kennerley et al., 2009). This 

contrasts with the orbitofrontal cortex (OFC), also implicated in economic decision-making, 

which contains neurons encoding the value of multi-attribute outcomes, but not the cost of 

action to obtain such outcomes (Kennerley et al., 2011; Padoa-Schioppa, 2011). Consistent 

data showing multiplexed cost-benefit encoding in the ACC also comes from rodent studies 

(Cowen et al., 2012; Hillman and Bilkey, 2012).

There is also considerable evidence supporting cost-benefit encoding in the human ACC 

during effort anticipation and decision-making. In tasks utilizing advance reward and 

demand (effort) cues, the ACC is sensitive to the anticipation of both dimensions, in both 

forced- and free-choice trials (Croxson et al., 2009; Kroemer et al., 2014; Kurniawan et al., 

2013; 2010; Massar et al., 2015; Prévost et al., 2010; Vassena et al., 2014). Moreover, the 

ACC has been repeatedly linked to the conscious experience of cognitive effort. In a striking 

demonstration, electrical stimulation of the human ACC reliably evoked the conscious 

experience of a forthcoming challenge and also a “will to persevere” through that challenge 

(Parvizi et al., 2013).

Tonic PFC DA strengthens cortical action policy signals

Multiplexed value information is used by the ACC to set action policies which can then be 

implemented via the basal ganglia, in competition with habitual biases against effortful 

engagement. In the domain of cognitive effort, the ACC has been proposed to subserve a 

specific computational function in selecting the identity of, and the intensity with which 

control signals are represented, as a function of the expected value of the associated outcome 

(Shenhav et al., 2013). In this context, DA in the ACC strengthens dynamics supporting 

representation and integration of action-outcome associations (as evidenced, e.g., by 

increasing power in gamma band oscillations (Steullet et al., 2014)), and may thereby 

increase the influence of ACC-based policy signals. Conversely, blocking DA diminishes 

the capacity of the ACC to bias the choice of greater effort for larger rewards (Schweimer 

and Hauber, 2006; Schweimer et al., 2005). Thus, in the mental arithmetic example, 

incentive-driven DA release in the ACC would promote cortical action policies related to the 

strategy of directly computing the solution to the two-digit multiplication problem, rather 

than following a prepotent bias to utilize a lower-effort strategy (i.e., guessing) or otherwise 

disengage.

DA and the ACC track progress to regulate persistence

Following initiation of a control episode, an actor must decide whether to persist. 

Opportunity costs rise with time-on-task, and so may the drive to disengage. As we propose, 

perceived progress implies increasing expected value, and thus may offset accruing 

opportunity costs. There is growing evidence that DA and the ACC regulate progress-based 

persistence with control episodes (Holroyd and Yeung, 2012; O’Reilly et al., 2014). In fact, 

in rats engaged in an effort-based decision-making task, ACC neurons multiplexing maze 

path, reward, and effort information were most selective after decisions were made, and 

their dynamics were identical across forced- and free-choice trials, suggesting greater 

involvement in biasing persistence than in initial selection (Cowen et al., 2012).
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Control episodes are intrinsically costly, perhaps reflecting opportunity costs incurred by 

working memory allocation (Inzlicht et al., 2014; Kurzban et al., 2013). Adaptive 

persistence in effortful sequences of behavior, therefore, requires ongoing computation of 

accruing costs and benefits (Meyniel et al., 2013). A useful metric is the rate of progress – if 

progress is sufficiently fast, engagement is maintained, while slow or blocked progress yield 

frustration and disengagement (O’Reilly et al., 2014).

The ACC, by virtue of its capacity for hierarchical RL, and reciprocal interactions with the 

DA midbrain (Holroyd and Yeung, 2012; Ribas-Fernandes et al., 2011), is well-positioned 

to track progress and regulate engagement. By this account, the ACC (perhaps in concert 

with the OFC (O’Reilly et al., 2014)) uses representations of hierarchical task structure to 

track progress towards sub- and super-ordinate goals and conveys progress via the 

dopaminergic midbrain. Faster progress generates DA release, promoting value learning and 

engagement, while slower progress generates DA dips. Indeed, ACC unit recordings in both 

monkeys and rats show ramping dynamics that reflect increasing progress through action 

sequences (Ma et al., 2014). Importantly, this dynamic reflects internal models of task 

structure: rat ACC neurons track progression through a sequence of lever presses, regardless 

of physical lever features or of particular sequences required on a given trial (Ma et al., 

2014).

The midbrain, for its part, shows RPE-like firing in response to perceived (progress-like) 

success in monkeys performing a visual working memory task, independent of actual 

success, implicating model-based criteria (Matsumoto and Takada, 2013). Also, VS BOLD 

signal in humans performing a working memory task increases transiently on correct versus 

incorrect trials, in the absence of performance feedback (Satterthwaite et al., 2012). 

Together, these results suggest not only that pseudo-RPEs report perceived goal progress, 

but also that one function of these pseudo-RPE signals is to modulate activity in the VS – a 

region proposed to serve as a key motivational hub (Mogenson et al., 1980).

DA and the ACC track costs to constrain persistence

Persistence is justifiable only inasmuch as that progress outpaces accruing costs. A 

normative account appeals to the opportunity costs of working memory allocation (Kurzban 

et al., 2013). Evidence of DA encoding opportunity costs comes from a high-resolution 

FMRI study finding signed RPE-like increases in activity in the VTA/SN corresponding 

with the value of unchosen options which therefore constituted missed opportunities 

(D'Ardenne et al., 2013). The ACC, by virtue of its connectivity with lateral PFC working 

memory circuits, e.g. (Kouneiher et al., 2009), and sustained activity through control-

demanding tasks, e.g. (Dosenbach et al., 2006), is well-positioned to track such opportunity 

costs.

Regardless of the nature of control costs, however, the ACC, which has long been 

implicated in avoidance learning (Shackman et al., 2011), has been proposed to mediate 

avoidance of control demands by attenuating DA-based value-learning signals (Botvinick, 

2007). The most direct evidence comes from a recent pharmaco-genetic imaging study 

(Cavanagh et al., 2014). The paradigm was structured such that reward and punishment cues 

were accompanied by either high or low decision conflict (control demands), designed to 
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test the prediction that conflict would attenuate reward and boost punishment learning. As 

expected, an EEG signature of ACC activity – mid-frontal theta power – increased reliably 

on conflict versus non-conflict trials. Critically, conflict strengthened individual difference 

correlations between mid-frontal theta power and the perceived punishment value of a given 

stimulus, while it attenuated individual difference correlations with the perceived reward 

value of a given stimulus. This result supports the hypothesis that the ACC both recruits 

control resources and also signals the cost of recruitment, thereby attenuating reward and 

amplifying punishment learning. Evidence implicating DA in particular included that dosing 

with cabergoline – a D2 selective agonist that acts on presynaptic D2 autoreceptors to inhibit 

burst firing to reward and exaggerate burst firing to punishments in the DS – had the effect 

of reducing reward responsiveness and boosting punishment responsiveness during learning.

Direct midbrain recordings support the hypothesis that DA neurons encode effort-discounted 

reward value. For example, a subset (11%) of midbrain VTA neurons in monkeys 

performing an effortful, incentivized reaching task fired in proportion to reward magnitude 

discounted by effort demands (Pasquereau and Turner, 2013). Similarly, population firing 

rates of substantia nigra (SN) neurons in monkeys performing an effort-based decision-

making task increased during higher reward trials, and decreased with increasing effort 

requirements (Varazzani et al., 2015) (Figure 5). Interestingly, a stronger relationship 

between net expected value and SN firing rates also predicted a stronger relationship 

between net expected value and choice behavior. This correlation suggests that midbrain 

dopaminergic activity has the capacity to directly influence decision-making beyond 

mediating value learning, a point to which we will return later.

The ACC is thus a strong candidate for regulating persistence with control episodes, by 

virtue of its capacity to track not only incremental progress towards a goal, but also 

opportunity costs, and thereby signal control costs. We further propose that ACC regulates 

persistence by conveying the momentary balance of accruing progress less costs via phasic 

DA release from the midbrain. As we discuss in the next section, these DA projections have 

important effects on not just value learning, but also on action selection, including 

instantaneous incentive motivation effects in the striatum.

DA and Action Selection Biasing

We propose that incentive-linked DA release promotes ACC-based action policies on 

engagement and persistence with control episodes over opposing action biases in the 

striatum (Figure 2D). The VS, and particularly the nucleus accumbens (NAcc), are regarded 

as a core limbic-motor interface (Mogenson et al., 1980), featuring dense reciprocal 

connections with both the dopaminergic midbrain and cortical regions including the ACC 

(Haber and Knutson, 2009). The DS, as described above, caches value functions controlling 

the gating of both motor behavior and working memory allocation (O’Reilly and Frank, 

2006). A reconceptualization of these regions, and their dopaminergic inputs, describes the 

VS as a “critic” evaluating states and driving DA RPE-based training of action value 

functions, while the DS serves as the “actor” that learns value functions for gating cognitive 

and motor action (Joel et al., 2002; van der Meer and Redish, 2011). Here, we highlight the 

role of DA in the VS in biasing action policies from cortical regions like the ACC, and DA 
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in the DS in promoting gating of effortful cognitive actions as a function of incentive state 

and goal proximity.

DA RPEs train the VS to encode net incentive value

In the VS, phasic DA RPEs train cortico-striatal synapses to reflect the net incentive value 

of a given state, i.e., expected reward less expected effort. Hence, fast-scan cyclic 

voltammetry in rats performing an effort-based decision-making task reveals NAcc DA 

release encoding both reward magnitude and lever-press ratio requirements of corresponding 

alternatives (Day et al., 2010), or the encoding of ratio requirements when demands are 

atypically low (Gan et al., 2009). Phasic DA RPE signals, in turn, train synapses to make VS 

neurons more excitable to states that signal relatively higher reward and lower effort costs.

Human FMRI studies support the hypothesis that the excitability of VS neurons encode net 

incentive value with respect to effort, e.g. (Croxson et al., 2009; Kurniawan et al., 2013; 

Schmidt et al., 2012). Striatal BOLD signal during a physical effort study increased to high 

versus low reward, and was attenuated when it was preceded by high versus low demands 

for handgrip squeezes (Kurniawan et al., 2013). Similarly, in the cognitive domain, a 

transient VS response to reward receipt was diminished if it was preceded by high versus 

low demands for cognitive control (i.e., task-switching frequency) (Botvinick et al., 2009).

Importantly, the VS evaluates both model-based and model-free state features (Daw et al., 

2011; van der Meer and Redish, 2011). The capacity for model-based evaluation makes the 

VS critical for selection of control episodes, which may involve multiple costly actions that 

are only justifiable with respect to ultimate goals. Hence, as we describe later, dopaminergic 

innervation of the VS is particularly important for selecting model-based behavior 

constituting control episodes.

Striatal DA release mediates incentive salience and state motivation

Adaptive engagement with control episodes should involve not only rigid implementation of 

cached action values, but should also be sensitive to the current motivational state. In the 

arithmetic example, it would be adaptive to modulate persistence upon realizing that 

incentive point values were larger/smaller than first thought.

The incentive salience hypothesis holds that action values can be modulated instantaneously 

(i.e., without prior learning) by incentive cued striatal DA release (McClure et al., 2003; 

Phillips et al., 2008; Zhang et al., 2009). Hunger, e.g., increases instrumental lever pressing 

for food in rats (Phillips et al., 2008). A longstanding literature implicates striatal DA in 

modifying value functions and thereby promoting state willingness to expend effort 

(Bromberg-Martin et al., 2010; Kurniawan et al., 2011; Salamone and Correa, 2012). 

Alternatively, as we discuss later, incentive-cued DA release in the VS, in particular, may 

promote flexible approach, increasing apparent willingness to expend effort (McGinty et al., 

2013; Nicola, 2010). In this section, we review evidence for DA’s role in incentive state 

modulation of cached action values.

VS DA appears critical for physical effort-based decision-making. In a canonical paradigm, 

rats choose between climbing a high barrier for more reward, or a low barrier for less 
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reward, or alternatively to select a high-ratio lever press option for more reward, or a low-

ratio lever press option for less reward; see (Bromberg-Martin et al., 2010; Kurniawan et al., 

2011; Salamone and Correa, 2012) for reviews. The typical result is that DA blockade in the 

VS (along with antagonism in the ACC, or lesions of the ACC-VS loop) shifts preferences 

from high-reward, high-effort options towards low-reward, low-effort options.

Human studies also implicate striatal DA signaling in incentive motivation. For example, 

D2/D3 receptor and dopamine transporter density in the NAcc predicts trait-level 

achievement motivation in the individuals with ADHD (Volkow et al., 2010). In a combined 

fallypride-PET and d-amphetamine challenge study, human volunteers with the largest DS 

binding potential, and highest sensitivity to d-amphetamine during an instrumental button-

pressing task were more willing to button press for reward (Treadway et al., 2012). Also, 

systemic DA agonism by the indirect agonist d-amphetamine ameliorates physical effort 

deficits among individuals with Parkinson’s disease (Chong et al., 2015). In the cognitive 

domain, VS BOLD signal interacted with a genetic D2 receptor density marker to predict 

individual differences in working memory performance (Nymberg et al., 2014).

The ability of incentive-cued DA release to energize behavior appears to critically depend 

on D2 receptor signaling in the NAcc core. In an instrumental lever-pressing task, transient 

GABAergic inactivation of the NAcc core, but not the shell, shifted preferences from high 

effort-high-reward to low effort-low reward alternatives (Ghods-Sharifi and Floresco, 2010). 

Additionally, rats treated with a viral vector yielding acute overexpression of D2 receptors 

in the NAcc showed enhanced instrumental lever-pressing (Trifilieff et al., 2013). We note 

that studies using animal models with developmentally overexpressed D2 receptors have 

also shown the reverse effect – i.e., decreased incentive motivation (Krabbe et al., 2015; 

Ward et al., 2015). However, this reverse effect may be due to comorbid, developmental 

under-expression of NMDA NR1 and NR2B receptors on VTA neurons, which reduces both 

their firing frequency and burst firing (Krabbe et al., 2015).

DA promotes effortful action by promoting cortical action policy signals in the VS and 
increasing the likelihood of gating in the DS

How does striatal DA bias selection of effortful action? By one proposal, action policies 

from the cortex, including canonical economic decision-making regions like the ACC and 

the OFC, are sent via axons that jointly synapse along with midbrain dopaminergic neurons 

in the striatum, and coincident phasic DA release boosts signal-to-noise: it enhances the 

contrast between strongly excited synapses corresponding to policy signals at the time of 

choice, relative to weakly excited synapses (Figure 2D) (Nicola et al., 2004). Thus phasic 

DA efflux could instantaneously amplify cortical action policies projected to the VS 

(Roesch et al., 2009).

A recent computational proposal (“OPponent Actor Learning” or “OPAL”; Figure 6A) 

unifies value learning and incentive salience aspects of DA. In the DS, where gating policies 

are cached in terms of the relative strengths of cortico-striatal synapses onto D1-expressing 

“Go” and D2-expressing “NoGo” cells, DA should increase Go cell firing, and inhibit NoGo 

cells, thus modulating cached policies in favor of gating actions (Collins and Frank, 2014). 

According to this proposal, DA not only influences the learning of cached value functions, 
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but can instantaneously modulate those value functions at the time of choice. The most 

direct evidence comes from an optogenetic study in which lateralized populations of DS Go 

and NoGo cells in rats were stimulated independently (Tai et al., 2012). Stimulation of Go 

cells yielded an apparent shift in preference to a contralateral option, while stimulation of 

NoGo cells yielded an apparent shift to an ipsilateral option. This shift mimicked additive 

effects in subjective value of one option over the other (Figure 6B). Hence, DS DA may 

translate incentive motivation into the selection of control episodes by increasing the 

subjective value of working memory allocation.

DA in the VS promotes model-based behavior

The capacity of phasic DA in the VS to bias cortical action policies related to effortful 

action is most critical in the early stages of successful control episodes when behavior is 

necessarily model-based. For example, in the two-digit mental arithmetic problem, the actor 

must consider the point-valued outcome when deciding whether to engage and persist in the 

episode, since the immediate value of initial sub-goals, e.g., computing the ones-digit 

product, is net-negative. Here, VS DA appears critical for promoting model-based behavior, 

of the kind necessary for persistence in these early stages. Indeed, higher presynaptic striatal 

DA, as measured by [F]DOPA PET, predicts greater reliance on model-based decision-

making in two-stage sequential decision-making task, and also predicted decreased reliance 

on habitual associations as encoded in striatal BOLD signal (Deserno et al., 2015). This 

could also explain why humans dosed with systemic DA agonists show more model-based 

relative to model-free decision-making (Wunderlich et al., 2012), especially to the extent 

that phasic signaling can be boosted by greater extrasynaptic tone (Dreyer, Herrick, Berg, 

and Hounsgaard, 2010).

The emphasis on promoting model-based behavior aligns with a reconceptualization, in 

which VS DA supports flexible approach, or persisting in goal-directed (and therefore 

model-based) behavior (McGinty et al., 2013; Nicola, 2010), rather than overcoming 

instrumental costs per se. The flexible approach hypothesis states that during periods in 

which rewards are not immediately available, agents are more likely to disengage and, 

because they can assume different positions with respect to operanda during such pauses, 

NAcc DA is needed to flexibly re-approach and engage.

By this account, much of the extant literature on NAcc DA promoting instrumental effort 

can be reinterpreted, wherein subtle task features allow more opportunities for 

disengagement in conditions for which effort demands are higher, placing more demands on 

NAcc DA to support flexible approach (Nicola, 2010). This could explain why NAcc DA 

depletion does not always affect effort-based decision-making about instrumental lever 

pressing in rats, e.g. when instrumental task design permits few opportunities for 

disengagement (Walton et al., 2009). It further explains the observation that NAcc DA is 

only necessary for initiating instrumental lever-pressing when there are longer pauses 

between action opportunities (Nicola, 2010).

Regardless of whether VS DA is necessary for overcoming effort costs or for flexible 

approach, the selection of effortful action sequences, like those comprising control episodes, 

requires VS DA (Nicola, 2007). Moreover, this may be particularly true when there is 
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greater “psychological distance” from goals (Salamone and Correa, 2012), involving deeper 

action-outcome chaining, whether that distance is a function of space, time, or the number of 

sub-goals in a two-digit multiplication.

DA tone in the striatum reflects goal progress and invigorates action

As progress is made within a control episode, and percepts narrow in on a goal state, action 

invigoration becomes more important. Consider the final stage of a two-digit multiplication, 

when cortical representations of products for summation increasingly suggest the ultimate 

solution. At this stage, consideration of outcome incentives becomes less important than 

quick and robust execution of a retrieval action to finalize the solution. Intriguingly, recently 

discovered DA dynamics appear well-suited to subserve this functional shift from model-

based control to invigoration (Figure 7). Namely, striatal DA tone ramps up smoothly, 

encoding goal progress (Howe et al., 2013). This dynamic, discovered with fast-scan cyclic 

voltammetry in rats navigating mazes, was found to scale with reward magnitude, and 

encode relative, rather than absolute distance to the goal.

The mechanism of DA ramping is not clear – whether it reflects local release, or ramping 

firing of midbrain DA cells. Ramping may actually result from the progressive 

accumulation, or “spill-over” from phasic DA release (Gershman, 2014), e.g., as progress is 

made. In particular, phasic DA release may reflect the temporal derivative of a running 

average rate of progress as tracked by the ACC and OFC (O’Reilly et al., 2014), or pseudo-

reward in hierarchical RL (Ribas-Fernandes et al., 2011).

An important functional consequence of rising striatal DA tone is the invigoration of 

behavior. Specifically, striatal DA tone is thought to encode the average rate of experienced 

reward and promote vigor (inverse latency to responding) adaptively, such that higher rates 

of reward imply a richer local resource that an actor should act more quickly to obtain (Niv 

et al., 2007). Hence, sufficiently fast progress towards the final goal yields ramping striatal 

DA tone, which can also promote action invigoration as the goal nears.

We close this section on dopaminergic mediation of value-learning and effort-based 

decision-making by noting conflicting evidence. First, a recent study has shown that DA-

based cached values do not necessarily map onto preferred actions (Hollon et al., 2014). 

Specifically, fast-scan cyclic voltammetry in the rat NAcc revealed that DA tone was higher 

on trials in which the rat was forced to choose a dis-preferred high-effort high-reward option 

over a preferred low-effort low-reward option. Of course, DA may play different roles in 

forced- and free-choice decision-making, but this result suggests that, at least in some 

contexts, the rank-ordered relationship between DA and preference can be violated. Second, 

we note recent work aimed at developing a rodent model of cognitive effort-based decision-

making, e.g. (Hosking et al., 2014). This work has provided mixed evidence so far regarding 

the consequences of systemic, pharmacological DA manipulation on willingness to expend 

cognitive (vs. physical) effort. It is open for debate whether the new rodent model represents 

the sorts of cognitive effort-based decision-making that is of focal interest for control 

episodes, and whether the task sufficiently discriminates effort-based from probabilistic 

decision-making. Nevertheless, a rodent model obviously holds great promise for more fine-

grained investigation into the neural circuitry mediating decisions about cognitive effort.

Westbrook and Braver Page 17

Neuron. Author manuscript; available in PMC 2017 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DA Translates Incentives Into Cognitive Motivation: Summary Proposal

Here, we recapitulate the proposal we have been building whereby DA does double duty 

during costly control episodes. We define control episodes as temporally extended 

sequences in which working memory is allocated to represent the rules needed to guide 

goal-directed behavior. During an episode, DA does double duty in that it: a) influences 

working memory contents by functional modulation of working memory circuits, and b) 

supports value-learning and decision-making about effortful cognitive actions (Figure 2).

Generally, we propose that:

• Phasic DA RPE signals encode goal benefits and effort costs for control episodes, 

caching net values in terms of LTP and LTD of cortico-striatal synapses.

• Incentive-linked DA release instantaneously augments cached values, increasing 

the likelihood of gating relevant task-sets into working memory in the striatum, 

thereby initiating control episodes associated with high incentive value.

• During control episodes, the ACC tracks both accruing opportunity costs and 

incremental progress – the balance of these is conveyed to midbrain DA neurons, 

where it is then transmitted to the striatum and PFC as phasic, effort-discounted, 

pseudo-RPE signals.

• In the PFC, rising DA tone encoding fast goal-progress (or high incentive state) 

enhances the robustness of persistent activity, thereby stabilizing active 

maintenance in recurrent networks representing task goals.

• In the VS, DA release promotes drive (or flexible approach) to select extended 

sequences of goal-directed behavior. This is particularly critical at early stages of a 

control episode. As the goal state nears, ramping DA tone invigorates (potentiates) 

action gating, including working memory allocation actions.

• In the DS, DA tone encoding sufficiently fast goal progress in a ramping fashion 

increases the general likelihood of task set updating. However, hierarchically 

structured task sets in the PFC interact with DS to target lower-level task sets for 

contextually-appropriate out-gating. Thus, specific, lower-level flexibility is 

promoted while high-level goal maintenance is sustained during the control 

episode.

• Conversely, to the extent that opportunity costs outpace incremental progress, the 

likelihood of disengagement rises. This may result from falling PFC DA tone, 

reducing the stability of working memory representations, or reduced likelihood of 

working memory gating in cortico-striatal-thalamic loops. Declining DA release 

undermines goal-directed flexible approach effects in the VS, further potentiating 

distraction.

Gaps in our account remain. We have described how rising PFC DA promotes task set 

stability, yet we have also pointed to evidence that supraoptimal PFC DA tone yields 

destabilization, and, indeed how rapid PFC DA efflux could act as a global updating signal, 

indiscriminately destabilizing all current representations. However, we think that, for most 
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operating regimes, PFC DA tone is unlikely to yield destabilization. As noted in a recent 

review (Spencer et al., 2015), intra-PFC injections of methylphenidate in rats, boosting DA 

tone, do not impair working memory at concentrations that are 16- to 32-fold higher than 

clinically relevant methylphenidate doses. This stands in contrast to the observation that 

systemic administration of methylphenidate can impair working memory at 4-fold 

concentrations higher than clinical doses.

An account of such discrepancies (between systemic and localized DA pharmacological 

manipulations) is that they relate to distinctions between DA modulation of PFC versus the 

striatum. Specifically, systemic high-dose DA manipulations may primarily act in the 

striatum where high DA tone can potentiate gating indiscriminately (Cools and D’Esposito, 

2011). In a recent PET study demonstrating this effect in humans, the consequences of 

incentive motivation on performance of a Stroop task were investigated as a function of 

individual differences in baseline striatal DA synthesis capacity (using 6-[18F]fluoro-l-

mtyrosine uptake) (Aarts et al., 2014). The key finding was that while incentives enhanced 

performance for some participants, those with highest baseline synthesis capacity saw a 

decrement in incentivized performance. This pattern is consistent with the interpretation that 

incentive-cued striatal DA release for those with high baseline DA synthesis capacity 

yielded indiscriminant updating, undermining performance. In our proposal, striatal DA tone 

rises when progress outpaces opportunity costs; however, indiscriminate updating is 

typically prevented (under non-pharmacological conditions) by the imposition of 

hierarchical, targeted updating policies guided by PFC working memory representations. 

Thus striatal DA tone to interacts with targeted updating policies to maintain engagement 

with the current control episode.

In focusing on DA, we have neglected other potentially relevant neurotransmitter systems. 

Norepinephrine, for example, has similar effects on the stability of working memory 

representations, and also responds like DA to incentive cues (Sara, 2009). A recent study 

showed that while SNc neurons appeared to encode net cost-benefit during effort-based 

decision-making decision making, locus coeruleus neurons encoded effort demands during 

task execution, suggesting a potential dissociation (Varazzani et al., 2015). Adenosine, for 

its part, appears to interact with the midbrain dopaminergic system to regulate effort-based 

decision-making, and may account for the effects of caffeine on cognitive effort (Salamone 

et al., 2012). Serotonin has also been proposed to oppose DA learning effects and may 

subserve effort cost learning (Boureau and Dayan, 2010). Nevertheless, we think that DA in 

particular has a number of useful properties that position it best for mediating cognitive 

incentive motivation.

Our proposal is similar in scope to other recent proposals. As described above, the Expected 

Value of Control proposal (Shenhav et al., 2013) considers cognitive control recruitment as 

driven by net expected value computations in ACC. A recent RL model (Holroyd and 

McClure, 2015) also considers the role of the ACC in value-based regulation of cognitive 

control, and thus offers specific predictions about the influence of reward dynamics on 

effortful action including up-regulation when rewards are below average and down-

regulation when rewards are above average. There are numerous points of theoretical 

overlap among our proposals. For example, in all three, the ACC biases the selection of 
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effortful cognitive control actions via interactions with the striatum. Our proposal 

complements the other two accounts by articulating the varied and precise roles by which 

DA contributes to the value-based regulation of working memory systems during control 

episodes. For example, in the computational model of (Holroyd and McClure, 2015), DA 

interacts with ACC signals such that when average reward, and presumably DA tone (Niv et 

al., 2007), are high, control signals are boosted because outcomes are more likely to fall 

below the average reward rate. Conversely, striatal DA blockade is posited to be 

computationally equivalent to low average reward, thus any reward is effectively above 

average and control signals dissipate. In our proposal, by contrast, striatal DA blockade also 

has the effect of diminishing effortful cognitive control, but it has its effects not in terms of a 

shift in perceived average reward, but in terms of diminished working memory stability in 

the PFC and targeted flexibility via the striatum.

We acknowledge the tentative nature of our proposal. Computational modeling and 

experimental validation are required to ensure DA has the functional capacity to subserve 

adaptive engagement and persistence in the ways we hypothesize. Nevertheless, we hope 

this conceptual sketch unifies disparate literatures on DA’s various functional properties and 

prompts development of a comprehensive theory of DA in cognitive effort. We have 

highlighted DA’s roles in value-learning and effort-based decision-making, and also the 

direct functional modulation of working memory circuits and thereby working memory 

contents by phasic and tonic DA modes. The integration of these two broad literatures 

together indicates double duty for DA in motivating cognitive effort.
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Temporally-extended, goal-directed behavior often involves subjectively effortful 

cognition. Westbrook and Braver review two broad, complementary roles by which DA 

translates incentive information into cognitive motivation: 1) modulating working 

memory circuit parameters and 2) training decision value functions for cognitive 

engagement.
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Figure 1. 
Incentive state dynamics in a control episode (exemplified by succession through mental 

multiplication task operations). Here, points incentivize initial engagement. Costs (red line) 

mount with time-on-task and increasing maintenance and updating demands. Actors persist 

while the net incentive value of engagement (black line) remains positive, which occurs 

when costs are offset by incremental progress (e.g. at sub-goal completion) and other 

incentives (green line). If the net incentive value goes negative, actors are prone to 

disengagement.
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Figure 2. 
Double duty for DA in cognitive effort includes: 1) modulating the functionality of working 

memory circuits including maintenance stability and specific flexibility for updating 

working memory contents (yellow), and 2) developing and biasing value-based policies for 

working memory allocation (blue). Clockwise from upper left: A) Key anatomical loci of 

DA circuitry regulating control episodes; B) Tonic DA promotes stable and robust working 

memory maintenance via PFC modulation; C) Phasic DA release encoding effort-discounted 

reward trains allocation policies in striatum and ACC; D) Phasic DA release and ramping 

tone in the striatum bias action selection towards costly working memory updating in the 

lateral PFC, by potentiating updating generally, and updating in accordance with PFC-based 

action policy signals, in particular. Top-down policy signals reflect hierarchically higher-

level goals and thus favor gating of contextually appropriate sub-goals into working 

memory. Insets are described in subsequent figures.
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Figure 3. 
Increased PFC DA tone (upper line) boosts firing in task-selective neurons in recurrent 

networks during working memory maintenance (e.g., delayed match-to-sample), relative to a 

baseline (control) dopaminergic state (lower line). In this computational simulation of neural 

dynamics, DA-linked increase in NMDA and GABA currents boosts persistent, recurrent 

firing, enhancing the stability and distractor resistance of task-relevant working memory 

representations. (x-axis units are arbitrary time; Brunel & Wang 2001)
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Figure 4. 
A) Decreased binding potential of D2 receptors in ventrolateral PFC indicates increased DA 

tone during a verbal working memory (2-back) task relative to a less demanding sustained 

attention (0-back) task. (Aalto et al. 2005). B) In a high-incentive context (orange; R+), 

sustained activity is enhanced in right lateral PFC during a working memory (Sternberg) 

task, relative to a low incentive context (blue; R-). (Jimura et al. 2010).
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Figure 5. 
A) Raster plots of monkey substantia nigra cell activity to incentive cues during effort-based 

decision-making, firing intensifies with higher incentive values (liquid reward; rightward 

columns) and lower effort demands (handgrip squeeze; upper rows). B) Location of 

substantia nigra recordings. (Varazzani et al. 2015).
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Figure 6. 
A) Schematic of cortico-striatal neural network model modified in OpAL such that DA 

instantaneously promotes firing of D1-expressing, direct pathway “Go” cells (green region) 

and inhibits firing of D2-expressing, indirect pathway “NoGo” cells (red region) in the 

striatum, thereby promoting working memory gating. (Collins and Frank, 2014). B) 

Optogenetic stimulation of striatal D1 and D2 cells in rats, during decision-making in a two-

alternative reward-learning task, produce dose-dependent shifts in preference towards the 

contralateral option in case of D1 cell stimulation (blue) and the ipsilateral option in case of 

D2 stimulation (red) mimicking shifts in subjective value functions (as reviewed in Lee et 

al., 2015).
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Figure 7. 
Ramping DA tone in the VS as measured by fast-scan cyclic voltammetry, during a single 

trial in which a rat progresses through a t-maze towards a final goal-state. Red vertical lines 

indicate, from left to right, the timing of an audible click cueing trial start, a tone indicating 

the direction the rat should turn, and finally successful goal attainment (chocolate milk). 

Ramp slopes reflected relative path distance, rather than absolute path distance or time-on-

trial, and scaled with reward magnitude (Howe et al., 2013).
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